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Abstract—In this paper, we address two long-standing radio-
genomic challenges in glioma subtype and survival prediction: (1)
how to leverage large amounts of unlabeled magnetic resonance
(MR) imaging data and (2) how to unite MR data and genomic
data. We propose a novel application of multi-task learning
(MTL) that leverages unlabeled MR data by jointly learning
an auxiliary tumor segmentation task with glioma subtype
prediction and that can learn from patients with and without
genomic data. We analyze multi-parametric MR data from 542
patients in the combined training, validation, and testing sets
of the 2018 Multimodal Brain Tumor Segmentation Challenge
and somatic copy number alteration (SCNA) data from 1090
patients in The Cancer Genome Atlas’ (TCGA) lower-grade
glioma and glioblastoma projects. Our MTL model significantly
outperforms comparable classification models trained only on
labeled MR data for both IDH1/2 mutation and 1p/19q co-
deletion subtype prediction tasks. We also show that embeddings
produced by our MTL models improve survival predictions
beyond MR or SCNA on their own. Our code is available at
https://github.com/nknuecht/glioma mtl.

I. INTRODUCTION

Gliomas make up 80% of all primary malignant brain
tumors in adults [1]. The 2016 World Health Organization
(WHO) criteria organizes diffuse gliomas into three broad,
survival-stratifying subtypes based on the mutation status of
the genes IDH1 and IDH2 and the co-deletion status of
whole chromosome arms 1p and 19q [2]. Of the patients
diagnosed with diffuse glioma in The Cancer Genome Atlas
(TCGA), those without an IDH1/2 mutation are expected to
live less than 15 months, those with an IDH1/2 mutation but
without a 1p/19q co-deletion live on average just under 7
years, and patients harboring a 1p/19q co-deletion generally
live nearly 11 years. Although genomic markers have become
the gold standard for glioma survival stratification, such data
are only attainable via costly, invasive surgery. On the other
hand, magnetic resonance (MR) imaging is a cost-effective,
readily available, and non-invasive method, which provides
rich volumetric images of a patient’s tumor. If glioma genomic
subtype markers could be inferred from MR imaging or
if survival prediction could be improved by complementing
genomic markers with MR imaging, treatment planning, such
as early enrollment in clinical trials, could be better managed.

Radiogenomics is an evolving field in medical imaging that
strives to equate quantitative image features with the genomic
profile of pictured tissues [3], [4]. The radiogenomic pipeline
typically consists of image acquisition, image normalization,
feature extraction, feature selection, and prediction using ma-

chine learning models [5]. Deep radiogenomic pipelines train
end-to-end deep learning models, replacing the feature ex-
traction, feature selection, and prediction stages with a single
model [6]–[11]. In neuro-oncology, radiogenomic approaches
have been used to predict WHO histopathology-defined tumor
grade [12], IDH1/2 mutation status [13]–[16], 1p/19q co-
deletions [11], [13], MGMT methylation [10], [11], overall
and progression free survival [17]–[21] and more [22], [23].

Still, radiogenomic methods remain challenging to compare.
Many studies are conducted on private datasets, and code for
radiogenomic pipelines is not always released [24]. In contrast,
the Multimodal Brain Tumor Segmentation Challenge (BraTS)
has spearheaded open science in glioma tumor segmentation
by curating large, multi-parametric glioma MR datasets [25]–
[27]. The medical imaging and computer vision communities
have used the BraTS datasets to train state-of-the-art segmen-
tation models and build valuable open-source software tools
[27]–[29]. Similarly, public genomic data in the TCGA have
been used for groundbreaking, reproducible research, espe-
cially in glioma [30]–[32]. Of particular interest are somatic
copy number alteration (SCNA) data, which describe large,
contiguous deletions or duplications of DNA and have been
linked to glioma molecular subtype and survival [33], [34].

Importantly, the set of patients in the 2018 BraTS dataset
partially overlaps with the set of glioma patients in the TCGA
[35], [36]. Labels for IDH1/2 mutations and 1p/19q co-
deletions as well as overall survival (OS) are available for
most patients in the intersection of these datasets, as is SCNA
data. However, the majority of BraTS patients do not have
accompanying data in the TCGA. Thus, training models only
on BraTS MR data with genomic or survival labels leaves the
bulk of these data unused and training models only on imaging
data ignores rich genomic data when it is available. Multi-
task learning (MTL) is a machine learning strategy that allows
models to learn multiple tasks at once [37], [38]. Compared to
single task learning, MTL allows models to learn richer data
representations from more diverse data and labels by receiving
feedback from complementary tasks [39], [40]. To allow MTL
models to learn from unlabeled BraTS MR data, we exploit
the recent advancements in brain tumor segmentation to assign
weak segmentation labels to otherwise unlabeled MR samples.

In this paper, we propose a novel, reproducible application
of MTL that (1) jointly learns tumor segmentation with
IDH1/2 or 1p/19q co-deletion subtype so that samples without
subtype labels can contribute to model learning and (2) unites
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Fig. 1. A) Slices of four MR modalities of a WHO grade IV IDH1/2 wildtype tumor in the BraTS dataset. Each MR sample has dimension 4×240×240×155,
where the 4 channels represent the T1ce, FLAIR, T2, and T1 MR modalities. The hallmark enhancing ring of aggressive tumors is clearly visible on the T1ce
modality. B) A ground truth BraTS 4-class segmentation mask overlaid on the FLAIR modality. The outer class consists of peritumoral edema; the inner
classes consist of necrotic tissue, non-enhancing tumor, and enhancing tumor. C) Distribution of dataset labels. The labeled training set is outlined with a red
boundary; the validation set is outlined in a gold boundary; the unlabeled MR data leveraged by our MTL model is outlined with a blue boundary; the set of
samples with SCNA data but without MR data is outlined with a green boundary. Notably, while all samples in the labeled training set and validation set have
1p/19q co-deletion and survival labels, only 69% of samples in the labeled training set have IDH1/2 labels, and only 78% of the samples in the validation set
have IDH1/2 labels. Additionally, while we refer to the MR samples without subtype marker or survival labels as unlabeled, 41% of these samples do have
4-class segmentation labels.

glioma genomic and imaging data by allowing SCNA data to
serve as model input alongside MR data. Our MTL model that
leverages unlabeled, 4-channel MR data accurately predicts
IDH1/2 mutations (AUC = 0.89) and 1p/19q co-deletions
(AUC = 0.87) and outperforms comparable 3D convolutional
neural networks (CNNs) trained on labeled MR imaging data
alone. Training with SCNA data dramatically boosts subtype
performance (AUC > 0.98) and raises the survival C-index
score of survival models trained on embeddings generated by
IDH1/2 prediction models from 0.719 to 0.735. To interpret
our results, we train and evaluate models on individual MR
modalities, visualize model gradients, and interrogate the rela-
tionship between our models’ predictions, tumor enhancement,
and WHO tumor grade. To the best of our knowledge, this is
the first multi-task learning strategy that unites the BraTS MR
and TCGA glioma SCNA datasets.

II. METHODS

A. Dataset

Multi-parametric MR data were downloaded for 542 pa-
tients from the 2018 BraTS training, validation, and testing
datasets. These MR data are 4-channel volumes composed of
pre- (T1) and post-contrast (T1ce) T1-weighted modalities and
T2-weighted (T2) and T2 Fluid-Attenuated Inversion Recovery
(FLAIR) modalities (Figure 1A). For 285 of the 542 BraTS
patients, 4-class segmentation masks that denote three different
tumor compartments and a background class (Figure 1B) are
given. Gene-level SCNA data were downloaded for 1090
patients in the the TCGA lower-grade (WHO grade II/III)
glioma and glioblastoma (WHO grade IV) projects from the
University of California Santa Cruz cancer browser1. All 235
patients in the intersection of the BraTS MR dataset and

1https://genome-cancer.ucsc.edu/

the TCGA glioma SCNA dataset have overall survival (OS)
and 1p/19q co-deletion labels, while only 171 have IDH1/2
labels. We use the 75 patients in the BraTS 2018 validation
and testing sets with SCNA data as a validation set for our
models, of which 59 have IDH1/2 labels. Of the 307 samples
in the BraTS dataset with neither survival nor subtype labels,
125 have ground truth segmentation labels. We assign weak
segmentation labels to the other 182 samples using a public,
pre-trained tumor segmentation model [41]. The distribution
of labels in our dataset is shown in Figure 1C. More details
are given in the supplementary materials.

B. Multi-task learning

Model: Our MTL model is illustrated in Figure 2. The
backbone of our network is an open-source ESPNet-based
[42] U-Net style [43] segmentation network pre-trained on
the BraTS 2018 training dataset [41]. To predict molecular
subtype markers, we add a branch to the bottom of the network
by average pooling the output of the network’s encoder. To
allow SCNA data to contribute to prediction, we pass 50-
dimensional SCNA PCA embeddings though a small fully
connected network and concatenate its output with the output
of the average pooling step. We then pass this concatenated
vector through a fully connected layer to obtain a binary
IDH1/2 mutation or a binary 1p/19q co-deletion prediction.
Notably, these PCA embeddings are generated from all 1,015
SCNA samples not included in the validation set (Figure 1C,
outlined in red and green). Thus, we are able to leverage
TCGA data that does not overlap with the BraTS dataset.
Loss Function: For subtype marker classification, we take the
weighted binary cross-entropy loss LC for training samples
that have subtype marker labels (Figure 1C, outlined in red).
For training samples with 4-class ground truth segmentation
labels (Figure 1C, red oval partially outlined in red), we
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Fig. 2. Our MTL model uses the architecture of 3D-ESPNet [41] with a classification branch connected to the output of the encoder. PCA-reduced genomic
SCNA data is passed though fully connected layers, concatenated with the average-pooled encoder output, and fed into a classifier to predict subtype class.
The network decoder also produces a segmentation mask. We take the weighted cross-entropy loss of the subtype classification and tumor segmentation tasks.
Our model accepts full brain multi-model MR volumes as well as cropped tumor volumes (shown here). We train models on 4-channel MR data input and
1-channel, single-modality input.

take the weighted 4-class cross-entropy segmentation loss
LSgt

between the MTL model’s decoder’s output and the
supplied segmentation mask. For unlabeled MR training sam-
ples for which 4-class segmentation labels are not available
(Figure 1C, outer blue crescent), we take the weighted 2-
class cross-entropy segmentation loss LSweak

between the
binarized output of the MTL model’s decoder and the weak
binarized segmentation mask produced by the pre-trained
segmentation network. To binarize these outputs, we merge
all non-background segmentation classes and predict tumor
vs. normal tissue. We binarize our weak segmentation masks,
because the pre-trained model benchmarked higher in the
BraTS competition on the whole tumor segmentation task
than the individual subcompartments segmentation tasks, as
is typical of models submitted to BraTS competitions [27],
[41]. Finally, we define our MTL loss as

L = LC + λLSgt
+ (1− λ)LSweak

(1)

where LC = 0 for samples without subtype marker labels, and
λ is a parameter that controls the feedback from weak and
ground truth segmentation labels. For samples with ground
truth segmentation labels, we set λ = 1. Otherwise, we set
λ = 0.

We modify LSgt
when we train on 1-channel, single modal-

ity MR data. We do not consider the outer edema tumor region
(Figure 1B) when we train on the T1ce modality, T1 modality,
or T1ce-T1 subtraction map (described in Section III) because
the edema segmentation label is difficult to identify on T1-
weighted modalities. In these cases we change LSgt

to the
weighted 2-class cross-entropy loss between the decoder’s
output and the tumor-core region comprised of the inner, non-
edema classes. Conversely, the T2 and FLAIR modalities char-
acterize the outer edema compartment better than the tumor

interior. Thus, when we train on these modalities, we change
LSgt

to the weighted 2-class cross-entropy loss between the
decoder’s output and the binarized whole tumor mask formed
by merging all non-background segmentation classes. We do
not modify LSweak

. We discuss the segmentation labels and
tumor tissue compartments in more detail in the supplementary
material.

Survival Prediction: We perform survival regression analy-
sis with the linear Cox Proportional Hazards (CPH) model,
leveraging embeddings produced by the last layer in the MTL
model’s classification branch [44]. To do this, we pre-train
MTL models on the joint IDH1/2 mutation and tumor seg-
mentation tasks and use the last-layer embedding to represent
each training sample. We do not learn survival concurrently
with subtype marker classification and tumor segmentation,
because the CPH loss function requires large batch sizes that
far exceed GPU memory given the size of 3D MR data (e.g.,
our MR raw samples are 700× larger than ImageNet samples).
We train our survival models on embeddings derived from the
IDH1/2 mutation classification task rather than the 1p/19q co-
deletion classification task, because our IDH1/2 models are
more accurate and IDH1/2 mutation status stratifies survival
better than 1p/19q co-deletion status.

In addition to evaluating our survival models on all patients
in our validation set, we also break up our validation set by
WHO 2016 molecular subtype as defined by IDH1/2 mutation
and 1p/19q co-deletion status. Specifically, we consider the
following three subtypes: IDH1/2 wildtype tumors, 1p/19q co-
deleted tumors, and IDH1/2 mutant tumors with no 1p/19q
co-deletion (1p/19q intact). We do this to evaluate the clinical
utility of our models.
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Input Modalities IDH1/2 Mutation (AUC) 1p/19q Co-deletion (AUC) Overall Survival (C-index)

CNN MTL (MR) CNN MTL (MR) MTL (MR) MTL (MR+SCNA)

All (Whole Brain) 0.669 0.846 0.605 0.813 0.587 0.723

All (Cropped) 0.872 0.894 0.744 0.871 0.697 0.732
T1ce (Cropped) 0.893 0.884 0.772 0.819 0.719 0.735
FLAIR (Cropped) 0.778 0.690 0.755 0.818 0.565 0.731
T1 (Cropped) 0.731 0.738 0.727 0.757 0.645 0.728
T2 (Cropped) 0.778 0.732 0.740 0.755 0.690 0.718
T1ce-T1 (Cropped) 0.895 0.861 0.764 0.742 0.707 0.723

TABLE I
RESULTS COMPARING MTL MODELS ACROSS PREDICTION TASKS AND MR INPUT FORMAT.

III. EXPERIMENTAL RESULTS

A. Experiments
We design experiments to answer the following questions:

1) Do MTL subtype marker models trained with labeled
and unlabeled MR data outperform CNNs trained only
on labeled MR data? We compare our MTL model
trained with unlabeled MR data and without SCNA data
(n = 467) to 3D CNNs trained only on labeled MR data
(n = 112 for IDH1/2 mutation prediction; n = 160 for
1p/19q co-deletion prediction). For a fair comparison,
we match the architecture of the CNNs with that of
our MTL model. Specifically, to construct our CNNs,
we detach the decoder and classification branch of our
MTL model and add a linear classification layer at the
bottom of the network.

2) Do MTL subtype marker models trained on SCNA data
and MR data outperform MTL models trained only on
MR data? We train MTL models with PCA-reduced
SCNA and MR data and compare them to MTL models
trained only on MR data.

3) Do MR and SCNA data predict survival better than
either on their own? We train linear CPH models on
embeddings produced by MTL models trained on (1)
MR data alone and (2) MR and PCA-reduced SCNA
data and compare their results to those of a linear CPH
model trained directly on PCA-reduced SCNA data.

We run these experiments on the following MR inputs:
• All modalities (whole brain): We concatenate all four MR

volumes and use the resulting 4-channel volume as input.
• All modalities (cropped): We use ground truth and weak

segmentation labels (described in Section II-B) to find
tumor bounding boxes to crop MR volumes to the tumor
boundary. We concatenate these sub-volumes and use the
resulting 4-channel volume as input.

• Single modalities (cropped): We create 1-channel cropped
tumor regions from each modality, separately.

• T1ce-T1 subtraction map (cropped): Subtracting the T1
volume from the T1ce volume accentuates the enhancing
tumor areas thought to be more common in IDH1/2
wildtype and non-1p/19q co-deleted tumors. We use the
cropped tumor region in the T1ce-T1 volume as single-
channeled input.

B. Evaluation Metrics and Training Details

For the IDH1/2 mutation and 1p/19q co-deletion prediction
tasks, we report the average maximum AUC score for each
model trained for 50 epochs over 10 trials. For survival
prediction, we report the C-index, which measures the extent
to which a model can properly order survival time. These are
standard metrics in radiogenomic classification [7], [11], [12],
[15], [16] and survival prediction [8], [18], [21].

We split our MR dataset into 467 labeled and unlabeled
MR training samples (Figure 1C, large oval outlined in blue
and green) and 75 MR validation samples (Figure 1C, out-
lined in orange). We use the remaining 855 samples with
SCNA data but no MR data (Figure 1C, crescent outlined
in green) to improve the SCNA PCA embeddings for the
235 samples that have SCNA and MR data, but we do not
explicitly train on these 855 samples because patients rarely
have SCNA data without MR data. Thus, these samples do
not resemble samples our models are meant to evaluate. More
training details and hyperparameter choices are described in
the supplementary material.

C. IDH1/2 and 1p/19q Results

In Table I, we give IDH1/2 mutation and 1p/19q co-deletion
prediction results for models trained on the set of MR inputs
detailed previously. Table I shows that our MTL models almost
ubiquitously outperform CNNs on the 1p/19q co-deletion task,
and that the T1ce modality and T1ce-T1 subtraction map are
the most effective predictors of IDH1/2 mutations. CNNs yield
results mostly similar to our MTL models on the IDH1/2
classification task. Table I also shows that the most dramatic
boost MTL models give is on whole brain, all modality
input, where they raise classification AUC by 0.18 for IDH1/2
mutation prediction and 0.21 for 1p/19q co-deletion prediction.
We point out that all of our MTL models trained with MR and
SCNA data were able to classify IDH1/2 mutation and 1p/19q
co-deletion status with AUC > 0.98. We leave these results
out of Table I because they are too similar to compare.

D. Survival Results

The last columns of Table I show that, setting aside WHO
tumor subtype, embeddings produced by MTL models trained
on SCNA and MR data better predict glioma survival than
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Input Modalities
1p/19q Co-deletion IDH1/2 Mutant, 1p/19q IDH1/2 Wildtype

(C-index) Intact (C-index) (C-index)

MR MR + SCNA MR MR + SCNA MR MR + SCNA

All (Whole Brain) 0.714 1.000 0.606 0.727 0.487 0.521

All (Cropped) 0.607 0.964 0.742 0.712 0.540 0.548
T1ce (Cropped) 0.821 0.786 0.576 0.742 0.644 0.571
FLAIR (Cropped) 0.607 0.964 0.636 0.712 0.527 0.540
T1 (Cropped) 0.643 0.893 0.606 0.636 0.535 0.544
T2 (Cropped) 0.679 0.500 0.803 0.697 0.562 0.563
T1ce-T1 (Cropped) 0.821 0.857 0.803 0.682 0.523 0.552

SCNA (PCA = 5) 0.929 0.667 0.512

TABLE II
MTL SURVIVAL PERFORMANCE BROKEN UP OVER WHO 2016 GLIOMA SUBTYPES.

embeddings produced by MTL models trained on MR data
alone. MTL models trained on T1ce data, with or without
SCNA data, predict survival better than any other modality.

In Table II, we break up our survival prediction results
by WHO 2016 molecular subtype as described in Section II.
The most striking result is that our MTL-embedding-based
survival models outperform linear CPH models trained on
PCA-reduced SCNA data alone. This is strong evidence that
adding MR data to SCNA data improves survival prediction.

Table II also shows that our MTL-embedding-based sur-
vival models perform exceptionally well on 1p/19q co-deleted
tumors. These models perform particularly well when the
embeddings they are trained on are obtained from MTL
models trained on SCNA and MR input formats that contain
the FLAIR modality (FLAIR, All). Our survival results also
show that embeddings produced by MTL models trained on
SCNA and MR data are mostly beneficial across MR input
formats when predicting IDH1/2 wildtype survival, though
IDH1/2 wildtype survival prediction is poor in all cases likely
because all IDH1/2 wildtype tumors do extremely badly, which
makes their survival difficult to order (Figure 3, red curve). The
exception is that using embeddings produced by MTL models
trained on only the T1ce modality gives a better survival
result (C-index 0.644) over the IDH1/2 wildtype cohort than
the result achieved by using embeddings produced by MTL
models trained on both the T1ce modality and SCNA data (C-
index 0.517). This may be indicative of the power tumor ring
enhancement has. However, if this is true, we would expect
the T1ce-T1 subtraction map, which also reveals tumor ring
enhancement, to perform just as well, but this is not the case
(C-index 0.523). In the case of IDH1/2 mutant, non-1p/19q
co-deleted tumors, it is not clear whether adding SCNA to
survival prediction is helpful.

IV. DISCUSSION

A. Clinical Utility

We emphasize the clinical applications of this study. For
patients who are unable to undergo brain surgery, or otherwise
cannot obtain their IDH1/2 mutation and 1p/19q co-deletion

Fig. 3. Kaplan Meier survival curves for WHO 2016 molecular defined
glioma subtypes from the TCGA. Median survival is given for each subtype
in parentheses. IDH1/2 wildtype tumors fair the worst.

status, accurate MR-based predictions of these subtype mark-
ers place patients on dramatically different survival trajectories
(Figure 3). For patients whose IDH1/2 mutation status and
1p/19q co-deletion status are known, our survival models offer
the potential for sub-stratifying survival within glioma subtype.
Clinically, improvements to survival stratification may lead to
better treatment management, especially for predicted short-
term survivors for whom early clinical trial enrollment may
be recommended.

B. Tumor Ring Enhancement

We interrogate the relationship between IDH1/2 wildtype
tumors and tumor ring enhancement—bright tumor tissue
usually surrounding dark, necrotic tissue on the T1ce modality
(Figure 4E,F). We suspect that the presence or absence of
tumor ring enhancement likely drives IDH1/2 prediction in
our models. To investigate this we show:

1) The majority of IDH1/2 wildtype tumors show tumor
ring enhancement and that the majority of IDH1/2
mutant tumors show either mild or no enhancement.

2) Tumor IDH1/2 wildtype status correlates with tumor
ring enhancement presence.

3) When tumor ring enhancement is present, our MTL
model trained on T1ce data focuses on it.
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Fig. 4. Left: Bar chart showing the distribution of tumor enhancement over IDH1/2 status. IDH1/2 wildtype tumors predominantly display tumor ring
enhancement. Right: Our networks appear to associate tumor ring enhancement with IDH1/2 wildtype tumors. Sample A) is a hyperintense IDH1/2 mutant
grade IV glioma and sample B) is a 1p/19q co-deleted glioma. Both harbor an IDH1/2 mutation and tumor ring enhancement and are consistently misclassified
as IDH1/2 wildtype gliomas. Samples C) and D) are IDH1/2 wildtype tumors that show mild and no enhancement, respectively, and are misclassified as
IDH1/2 mutants. Sample E) is an IDH1/2 mutant misclassified as an IDH1/2 wildtype. Sample F) is a correctly classified IDH1/2 wildtype. Integrated gradients
in the images to the right of E) and F) show that our T1ce-based MTL models put emphasis on tumor ring enhancement.

4) Our model’s IDH1/2 validation predictions score well
when considered as tumor ring enhancement predictions.

First, we plot the distribution of tumor ring enhancement
across IDH1/2 mutant and wildtype tumors in the labeled
IDH1/2 training set (Figure 4, left panel). We see that tumors
with tumor ring enhancement are indeed far more likely to
be IDH1/2 wildtype tumors whereas tumors with mild or
no enhancement are more likely to have IDH1/2 mutations.
Second, we find that the Pearson correlation coefficient (R =
0.791, p < 10e−14) between IDH1/2 wildtype status and
enhancing ring presence indicates that they correlate.

Third, to see whether our IDH1/2 MTL model trained on
the T1ce modality focuses on tumor ring enhancement when
it is present, we use integrated gradients, a gradient attribution
method, to visualize the regions of the tumor on which
our model concentrates [45]. Integrated gradients pictured in
Figures 4E and 4F show that this is the case. We see more
evidence that this model associates tumor ring enhancement
with IDH1/2 wildtype tumors when we examine the mistakes
this model makes. Examples where this model misclassifies
IDH1/2 mutant tumors with ring enhancement as IDH1/2
wildtype tumors are given in Figures 4A and 4B; on Figures
4C and 4D we see that our model mistakes IDH1/2 wildtype
tumors without tumor ring enhancement for IDH1/2 mutant
tumors. Finally, we calculate the AUC score (0.955) between
our model’s IDH1/2 predictions and tumor ring enhancement
presence labels. That the AUC score is higher when measured
against ring enhancement labels than IDH1/2 mutation labels
strongly suggests that this model associates IDH1/2 wildtype
tumors with tumor ring enhancement to the point of overfitting.

We investigate the relationship between 1p/19q co-deleted
tumors and tumor ring enhancement in the supplementary
material, although this effort is hampered by the low count of
1p/19q co-deleted tumors in the labeled training set (14/160)
and validation set (14/75).

Fig. 5. A UMAP projection of 1090 SCNA samples produces mostly WHO
molecular subtype-specific clusters.

C. Additional Performance Comments

We discuss two important results. First, we note that adding
SCNA data to our MTL models pushes the AUC score over
0.98 for both subtype marker prediction tasks. A UMAP
projection [46] of the entire SCNA TCGA dataset (Figure 5)
shows that WHO molecular subtypes mostly cluster together
and therefore are likely predictive of subtype markers on their
own. Thus, MR imaging may be unnecessary for subtype
marker prediction in the rare setting where patients have
SCNA data but no direct knowledge of their IDH1/2 mutation
or 1p/19q co-deletion status. Nonetheless, the observation that
SCNA is correlated with WHO glioma subtype makes it more
impressive that our MTL-based survival models outperform
survival models trained on raw PCA-reduced SCNA data alone
given how well glioma subtype stratifies survival (Figure 3).

Second, we observe that adding unlabeled data to the
4-channeled whole brain MR input boosts subtype marker
prediction far more than other MR input formats (Table I, All
(Whole Brain)). We suspect that this is because we initialize
the encoder and decoder components of our MTL network
with the weights from a tumor segmentation network pre-
trained on the BraTS data. Because the pre-trained network
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Fig. 6. Bar chart showing the distribution of WHO grade over IDH1/2
status in our labeled training set. IDH1/2 wildtype tumors are known to be
predominantly grade IV tumors [2].

was trained on 4-modality data at the same resolution we
use for our whole brain training input, whole brain MTL
models give reasonable segmentation outputs and thus are
likely stabilized by the auxiliary segmentation task. On the
other hand, the higher resolution of whole brain input coupled
with the fact that CNNs are limited to labeled MR training
data likely makes whole brain input particularly difficult for
single task learning.

D. Comparison to Previous Work

We do not give direct comparisons to previously reported
results, because our goal was not outperform others. Instead,
we endeavored to test the advantage of using unlabeled MR
over supervised CNNs and did not want optimizations, such as
network architecture, to obscure the benefit of our strategy. We
also do not formally report our segmentation results, because
segmentation is performed only to increase classification and
survival prediction performance, not to compete with dedicated
segmentation models. Our MTL model trained on the 1p/19q
co-deletion task with 4-channel cropped MR input gives the
best segmentation results (Dice score 0.70). Although this is
substantially worse than our pre-trained network’s reported
performance (Dice score 0.85) and that of the best BraTS
models (Dice scores ≈ 0.90), using segmentation loss in our
MTL models accomplishes our goal of boosting the subtype
marker and survival tasks’ performances [27], [28].

E. Future Directions

Natural extensions of this work include further model op-
timization, adding concurrent survival learning to our MTL
models, and conducting a deeper investigation into our work’s
clinical implications. Upgrading the pre-trained segmentation
model we use to a model that benchmarked higher on a BraTS
challenge constitutes a simple improvement to this study.
We chose an ESPNet-based encoder-decoder structure for our
MTL model backbone, because ESPNet is light-weight, fast
to finetune, and delivers performance competitive with other
off-the-shelf segmentation models [42].

Ideally, we would like to learn overall survival jointly with
glioma subtype. However, our survival models must be trained

separately, because the CPH loss function requires O(n2)
comparisons for each pair of data points. For large 3D MR
data, this requires too much memory. Siamese networks, triplet
loss, and other network designs allow training pairwise losses
in mini-batch fashion, but integrating CPH loss with mini-
batches degrades the prediction performance when the number
of samples is much larger than the batch size [47]. Future
studies are needed to design better deep learning models for
survival prediction in this complex setting.

We showed that IDH1/2 wildtype status is tightly correlated
with the presence of tumor ring enhancement, and thus that
accurate prediction of IDH1/2 mutations results in accurate
prediction of the presence of tumor ring enhancement. There-
fore, it may be more prudent to predict IDH1/2 status for
tumors known to have tumor ring enhancement, because this
will control for such correlation. Similarly, our analysis could
be improved by controlling for WHO tumor grade. Like tumor
ring enhancement, WHO grade (grade II/III vs. grade IV)
is correlated with IDH1/2 wildtype status (R = 0.742, p <
10e−11) and has a AUC score of 0.95 when evaluated with
our MTL model’s IDH1/2 predictions. Figure 6 shows that
IDH1/2 mutant tumors in our training set are mostly WHO
grade II/III, while IDH1/2 wildtype tumors are mostly WHO
grade IV. Because tumor grade is known to stratify survival,
not only should we evaluate our survival models separately
on each subtype, we should also break each subtype down by
grade. However, sample size and class imbalance are obstacles
to both of these conditions. Tumor ring enhancing IDH1/2
mutant tumors are rare, for example, as are WHO grade IV
IDH1/2 mutant tumors. Larger cohorts are necessary for these
analyses.

V. CONCLUSION

The ability of MTL to learn from unlabeled imaging data is
a promising avenue for expanding existing datasets. Further,
models capable of learning from genomic and imaging data
create the potential for quickly piecemealing diverse datasets
together that historically have been analyzed independently.
This is especially important for public datasets where new
methods can be collectively developed and reproduced. To this
end, we merged the 2018 BraTS MR dataset and the TCGA
lower-grade (WHO grade II/III) glioma and glioblastoma
(WHO grade IV) SCNA datasets. Our primary contribution is
the novel application of MTL that jointly learns classification
tasks and tumor segmentation, allowing unlabeled MR data
to contribute to model learning. We show that using MTL
to leverage unlabeled MR data improves subtype marker
prediction and, by training on MTL embeddings, survival pre-
diction as well. When SCNA data is used in conjunction with
MR data, our results further improve. Our models have the
potential to aid patient management, especially for predicted
short-term survivors.
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